9. Метеорологические наблюдения

В работах [41–46] описана программа метеорологических измерений, которая была реализована на спускаемых аппаратах АМС «Викинг» и включала измерения температуры воздуха, скорости ветра и атмосферного давления. Скорость и направление ветра измерялись при помощи термоанемометра с двумя ортогонально расположенными в горизонтальной плоскости пленочными датчиками. Для дублирования и однозначности определения направления ветра использовалась также система четырех термопар, расположенных по углам квадрата. Температура воздуха измерялась при помощи нескольких термопар, показания которых привязывались к показаниям контрольной термопары, находящейся внутри корпуса СА.

Все датчики ветра и температуры установлены в конце выдвижной стрелы на расстоянии не меньше 0,61 м от корпуса СА и на высоте 1,6 м над марсианской поверхностью (см. рис. 12). Испытания в аэродинамической трубе показали, что точность измерений скорости ветра более 2 м/с должна быть не хуже ±15%, направления ветра +10° и температуры ±1,5°С. Влияние корпуса СА может несколько сказываться лишь на определении ветра при азимутах 260° и 340° (по отношению к направлению на север). Для измерений атмосферного давления использовался датчик, расположенный внутри корпуса СА и обеспечивающий точность около 0,07 мбар.

Измерения в точке посадки (район Chryse: 22,48° с. ш., 48,0° з. д.) начались через 2 ч после посадки СА. В работе [42] рассмотрены данные за несколько первых марсианских суток (24,660 ч), полученные через интервалы времени, равные 1 ч 27 мин за периоды регистрации длиной 11 мин, в пределах которых показания осреднялись за 4 или 8 с.

Анализ данных за первые 4 сола выявляет очень хорошую воспроизводимость данных от суток к суткам, что следовало ожидать, поскольку данные наблюдений относятся к лету в субтропиках, где, в условиях тонкой марсианской атмосферы, процессы определяются регулярным суточным ходом радиационного баланса подстилающей поверхности. Поэтому различия температуры от суток к суткам (в фиксированный момент времени) не превосходят нескольких десятых Кельвина.

Анализ результатов измерений суточного хода температуры воздуха, атмосферного давления, скорости и направления ветра по данным для первых суток функционирования аппаратуры (рис. 14) обнаружил неожиданно высокую повторяемость условий ветра: преобладает слабый восточный ветер в позднее послеполуденное время при скорости ветра, уменьшающейся до нуля к полуночи. Ночью доминирует ветер с юго-запада с регулярными осцилляциями скорости и направления. По-видимому, эти особенности ветрового режима определяются влиянием крупномасшабной топографии: СА находится на пологом склоне, наклоненном к северо-востоку, к юго-западу от центра обширной круговой депрессии диаметром около 300 км и глубиной 3 км. Юго-западный ветер ночью определяется радиационным выхолаживанием поверхности и происходящим при этом стоком воздуха по склону. Осцилляции направления ветра с периодом около 4 ч обусловлены, вероятно, влиянием крупномасштабных гравитационных волн. Возможно, что суточные колебания ветра и атмосферного давления являются следствием суточной перемещающейся волны планетарного масштаба, обусловленной перемещающимся суточным циклом нагревания и связанными с этим атмосферными приливами.

Рис. 14. Суточный ход температуры (1), атмосферного давления (2), скорости (3) и направления (4) ветра по данным измерений со спускаемого аппарата «Викинг-1» в течение первого сола (марсианских суток) функционирования СА после посадки 20 июля 1976 г.

Сопоставление данных прямых измерений температуры воздуха на высоте 1,6 м со спускаемого аппарата и дистанционных измерений температуры подстилающей поверхности со спутника (рис. 15) выявляет близкое соответствие перед восходом Солнца, но наличие сильного контраста температур «подстилающая поверхность—воздух» (до 25°С) днем, что аналогично условиям земных пустынь, свидетельствует об интенсивной конвекции в дневное время.

Рис. 15. Суточный ход температуры воздуха у поверхности Марса по данным прямых измерений со спускаемого аппарата за первые три сола (3), температуры поверхности по данным дистанционных измерений с ИСМ (I) и теоретического моделирования (2).

Показателем конвекции являются также данные о коротко-периодической изменчивости температуры и ветра. Минимум температуры имеет место вскоре после восхода Солнца (5 ч 24 мин местного времени) при среднем значении (за трое суток), равном 188 К. Перерыв в работе линии связи не позволил точно определить момент максимума температуры. Интерполяция привела к выводу, что он имел место примерно в 15 ч 30 мин при среднем значении 244 К. Измерения давления выявили суточный ход с амплитудой около 0,2 мбар. Минимум давления наблюдается примерно через 4 ч после полудня, а максимум — через 4 ч после полуночи. Среднее давление за первые трое суток составило 7,65 мбар.

Сопоставление с изображениями поверхности привело к выводу о том, что эоловый рельеф не обусловлен наблюдаемым полем ветра и является, по-видимому, следствием предшествующей атмосферной циркуляции.

Выполненный позднее [43] анализ данных метеорологических наблюдений за первые 20 солов подтвердил сделанный ранее (по данным за трое марсианских суток) вывод о высокой повторяемости суточных ходов температуры, ветра и атмосферного давления. Это дало основание для осреднения всех полученных данных с целью характеристики климатических особенностей рассматриваемой точки в летнее время. За период 20 солов ареоцентрическая долгота Солнца изменилась в пределах 98–108° (долгота 90° соответствует летнему солнцестоянию в северном полушарии).

Рис. 16. Осредненный по данным СА «Викинга-1» за 20 марсианских суток суточный ход температуры воздуха.

Осредненный суточный ход температуры воздуха (рис. 16) характеризуется максимумом 241,8 К в 15 ч 00 мин местного времени и минимумом 187,2 К в 05 ч 00 мин (непосредственно перед восходом Солнца), что (с точки зрения вариаций, но не абсолютных значений) типично для условий земной пустыни (для сравнения Хесс с соавторами использовали данные для пустыни Мохаве в Калифорнии). Естественно, что амплитуда суточного хода температуры на Марсе значительно больше земной, поскольку гораздо большие вариации претерпевает температура подстилающей поверхности (это обусловлено малой плотностью марсианской атмосферы).

Подобными для Марса и земной пустыни являются отношения первой (суточной) и второй (полусуточной) гармоник суточного хода атмосферного давления, но вариации атмосферного давления на Марсе по отношению к среднесуточному значению в 5 раз больше, чем на Земле. Полусуточная волна в ходе давления обусловлена (как и в условиях земной пустыни) полусуточным солнечным приливом. Значительно более сложна природа суточной волны, определяемая взаимодействием нескольких факторов.

Для суточного хода скорости ветра (рис. 17) типично среднее значение 2,4 м/с при преобладании южного ветра и суточное вращение вектора скорости ветра против часовой стрелки (амплитуда суточного хода скорости ветра составляет около 5 м/с). Как уже отмечалось, преобладание южного ветра обусловлено влиянием крупномасштабной топографии.

В согласии с данными метеорологических измерений на СА «Викинг-1» аналогичные данные САВ-2 выявляют высокую степень повторяемости суточного хода температуры, ветра и атмосферного давления в период начала лета [45]. Средние максимальное и минимальное значения температуры равны 241 К и 191 К соответственно. Максимум температуры наблюдается примерно через 3 ч после полудня, а минимум — вблизи момента восхода Солнца.

Рис. 17. Годограф вектора горизонтальной скорости ветра по данным СА «Викинга-1» за 20 марсианских суток. Цифрами у годографа обозначены часы суток, отсчитываемые от полуночи, u, v — западная и южная компоненты ветра соответственно.

Средняя скорость ветра, направленного с юго-востока на северо-запад, равна 0,7 м/с при амплитуде суточного хода, составляющей 3 м/с. Суточный ход вектора скорости ветра характеризуется его вращением по часовой стрелке (в противоположность данным САВ-1 о вращении против часовой стрелки). Суточные вариации порывистости ветра в точках посадки САВ-1 и САВ-2 сходны. Порывистость наблюдается вскоре после восхода Солнца, усиливается по мере того, как приповерхностный слой становится конвективно неустойчивым, и сохраняется до послеполуденного времени. Максимальная скорость ветра во время порывов достигала 17 м/с.

Давление обнаруживает суточную и полусуточную периодичности, но их амплитуда значительно меньше, чем в случае САВ-1. На 37-м соле стали появляться заметные отклонения от высокой повторяемости суточного хода ветра. Как и в случае САВ-1, имеет место монотонный спад давления, обусловленный уменьшением содержания СО2 в атмосфере под влиянием его конденсации в районе южной полярной шапки.

Спускаемый аппарат АМС «Викинг-2» доставил на поверхность Марса трехосный короткопериодический сейсмометр, который начал функционировать в 00 ч 53 м 01 с среднего Гринвичского времени 4 сентября 1976 г., вскоре после полудня по местному времени [14]. Первой задачей интерпретации данных сейсмометрических измерений является выявление микросейсмических шумов и их природы. Если на Земле главными источниками фоновых шумов являются океаны и атмосфера, то в условиях Марса шумы содержат важную микрометеорологическую информацию, будучи обусловлены порывами ветра.

Наблюдения обнаружили высокую корреляцию между уровнем микросейсмических шумов и скоростью ветра, полученной по данным метеорологических измерений. Наиболее спокойным временем суток оказался интервал с 18 ч (2 ч до захода Солнца) до 04 ч (вскоре после восхода Солнца), в течение которого скорость ветра снижается до значений меньше 1–2 м/с. Вариации сейсмического сигнала отражают рост интенсивности порывов ветра в послеполуденное время. Вспышки шумов продолжительностью 1–3 мин происходят в это время с интервалами 10–50 мин. Хотя за первые 60 дней наблюдений не было обнаружено марсотрясений, было бы преждевременно делать определенные выводы о сейсмичности на Марсе, поскольку существующие там условия допускают проявление сейсмичности.

Выявленное измерениями атмосферного давления монотонное уменьшение среднесуточных значений на протяжении всего 20-суточного периода следует объяснить влиянием конденсации углекислого газа в зоне южной (зимней) полярной шапки. Сравнение измеренного понижения давления (0,0122 мбар/сут) с результатами расчетов для различных моделей привело к выводу, что модель, предполагающая адсорбцию углекислого газа марсианским реголитом (во всяком случае, за период сезона) неприемлема.

Предположение о влиянии конденсации углекислого газа в зоне зимней полярной шапки на монотонное уменьшение атмосферного давления у поверхности Марса подтверждается результатами расчетов [96, 97]. Было выполнено численное моделирование общей циркуляции атмосферы (ОЦА) на Марсе для периода функционирования спускаемых аппаратов АМС «Викинг». С этой целью применена трехуровенная модель ОЦА, разработанная Минцем и Аракавой. Предполагается, что неизменное давление на уровне тропопаузы в чисто углекислотной атмосфере Марса составляет 1 мбар, начальное среднее давление на уровне поверхности планеты равно 5,81 мбар, а температура изотермической атмосферы 200 К. Заданы среднее глобальное альбедо 0,24, альбедо поверхности при наличии инея и в зоне полярных шапок 0,6, тепловая инерция грунта 272 вт/ (м2·с1/2·К), оптическая толщина облаков из льда 1 мкм и средний радиус частиц 2 мкм.

Расчеты глобальных полей атмосферного давления, температуры и геопотенциала сделаны для трех уровней ? = (Р — Рт)/(Рs — Рт) =0,213; 0,603; 0,890 (Ps, Pт — атмосферное давление на уровне поверхности и тропопаузы соответственно) для узлов сетки 5x6°. В рассматриваемый период (вторая половина лета северного полушария) происходит быстрое развитие южной полярной шапки, достигающей 45° ю. ш., которое сопровождается уменьшением массы атмосферы. В начале периода имеет место небольшое отступление северной полярной шапки, но оно полностью прекращается на 30-е сутки (статистическое равновесие ОЦА достигается через 15 сут).

Анализ полей давления, температуры и геопотенциала, полученных осреднением за 55–63 сут численного моделирования, показал, что расчетное поле ветра можно представить в виде суммы трех компонентов: зонально-симметричной, топографически обусловленной и суточной приливной. Оценки скорости ветра у поверхности в трех возможных точках посадки дали средние значения, варьирующие в пределах 20–25 м/с, но максимальные значения оказываются иногда в два раза превосходящими средние величины (более слабые ветры обнаружены в высоких широтах).

Если пренебречь влиянием адсорбции углекислого газа реголитом, то за первые два месяца функционирования АМС «Викинг» атмосферное давление у поверхности должно упасть на 0,8 мбар под влиянием аккумуляции СО2 южной полярной шапкой (выделение СО2, адсорбированного реголитом, может, вообще говоря, сглаживать эти вариации).

Наличие сильного меридионального градиента температуры в полосе 20–60° ю. ш. свидетельствует о том, что эта полоса представляет собой зону интенсивной бароклинной неустойчивости. Здесь наблюдается, с другой стороны, очень сильная статическая устойчивость. Под влиянием топографии в поле ветра формируется отчетливая компонента в виде стоячих волн. Построение годографов вектора скорости ветра в возможных точках посадки СА выявило лишь небольшое изменение скорости и направления ветра в течение суток. По-видимому, эта изменчивость недооценена, однако, примерно вдвое ввиду схематичности учета влияния атмосферных приливов.