6. Газовый состав атмосферы

Предпринятые ранее измерения общего содержания водяного пара в марсианской атмосфере обнаружили, что водяной пар появляется в середине лета соответствующего полушария и его содержание становится максимальным примерно через два месяца, достигая 50 мкм при характерных горизонтальных масштабах порядка 103 км (наибольшее влагосодержание атмосферы наблюдается в умеренных широтах). В работах [35, 37] обсуждены предварительные результаты измерений с АМС «Викинг-1», выполненных в течение периода, начавшегося за двое суток до вывода АМС на орбиту искусственного спутника Марса и продолжавшегося до 30-го витка вокруг Марса, когда произошло отделение СА. Этот период соответствует началу «влажного» сезона в северном полушарии.

Рассматриваемые наблюдения охватывают южное (сухое) полушарие и северные широты до 20° при наличии нескольких изолированных серий измерений в полосе 40–50° с. ш. Прибор, предназначенный для определения общего влагосодержания (датчик водяного пара на Марсе — ДВПМ), представляет собой спектрометр с дифракционной решеткой, функционирующей в 7200 см-1 (1,4 мкм) полосе поглощения водяного пара при спектральном разрешении 1,2 см-1, что позволяет обеспечить измерения влагосодержаний меньше 1 мкм атм. ДВПМ обычно работает как пятиканальный радиометр, три канала которого расположены вблизи центра полосы (7223, 13; 7232, 20; 7242,74 см-1), а два — в окнах прозрачности. Приемниками излучения для всех каналов служат радиационно охлаждаемые сернисто-свинцовые фотосопротивления. Иногда осуществлялось сканирование по частоте с целью измерений спектрального распределения излучения в диапазоне 7215–7251 см-1. Поле зрения ДВПМ составляет 2x16 мрад, что соответствует «пятну» на местности 3?24 км при высоте периапсиса 1500 км. За счет ступенчатого сканирования на 15 шагов вдоль короткой стороны поля зрения достигается охват площади около 20?45 км (в периапсисе) за период сканирования 4,48 с.

Наличие данных пятиканальных измерений позволяет определить не только общее влагосодержание, но также температуру и атмосферное давление вблизи уровня «центра тяжести» слоя водяного пара. Данные наблюдений свидетельствуют об очень малом влагосодержаний (0–30 мкм) марсианской атмосферы в южном полушарии и постепенном увеличении влагосодержания при перемещении в северное полушарие. Максимальные значения достигали 20–30 мкм, причем наибольшее значение (30 мкм) зарегистрировано в районе Elysium Amazonis при измерениях перед выводом АМС на орбиту вокруг Марса. Большой интерес представляют наблюдения дневного хода влагосодержания, отражающие особенности фазовых превращений воды в течение суточного цикла. Условия наблюдений позволили осуществить слежение за вариациями влагосодержания с рассвета до полудня в трех точках: 10,83° с. ш., 15,69° ю. ш. и 17,77° ю. ш. Для первой из этих точек обнаружена регулярная воспроизводимость дневного хода с максимумом влагосодержания в местный полдень. Наблюдаются различия в дневном ходе для разных точек планеты. Водяной пар располагается близко к поверхности планеты и, по-видимому, находится в насыщающем равновесии по отношению к приповерхностной дымке или туману в течение большей части дня. По меньшей мере 80% водяного пара должно переходить в твердую фазу в период между полуднем и последующими утренними сумерками.

В работе [36] приведены результаты измерений содержания водяного пара в околополярной зоне марсианской атмосферы, выполненных с АМС «Викинг-2» в течение двухнедельного периода, близкого к дню летнего солнцестояния в северном полушарии.

Общее содержание водяного пара оказалось максимальным в полосе 70–80° с. ш., а его абсолютные значения выше когда-либо наблюдавшихся ранее. Широтный профиль общего содержания водяного пара на 180° з. д. характеризуется возрастанием от нулевых значений в южном полушарии до 70–80 мкм в полосе 70–80° с. ш. и несколько убывает (до 55 мкм) вблизи Северного полюса (точность отдельных измерений составляет 10–15%, а средних значений ±4%). Аналогичные результаты дало построение меридиональных профилей для других долгот.

Столь значительное влагосодержание атмосферы предполагает наличие у поверхности планеты таких высоких температур (>204 К), которые не допускают сохранение полярной шапки из твердой углекислоты (в этом случае температура должна быть равна 150 К). Отсюда вытекает, что доминирующим компонентом летней остаточной северной полярной шапки является лед. Грубая оценка толщины периферийной части ледового покрова полярной шапки приводит к значениям порядка 1–2 км. Толщина льда в центральной (сплошной) части полярной шапки должна быть такой же или большей.

Поскольку содержание водяного пара в атмосфере Марса очень мало, весьма вероятно, что мощным резервуаром водяного льда является планетарный реголит. Важной целью дальнейших исследований должно стать выяснение вопроса о том, является ли этот полярный резервуар в настоящее время суммарным источником или стоком атмосферного водяного пара на протяжении промежутков времени больше марсианского года.

В работе [86] рассмотрены результаты измерений состава и структурных параметров марсианской атмосферы, осуществленных при входе СА «Викинг-1» в атмосферу планеты 20 июля 1976 г. Состав атмосферы на высотах более 100 км измерялся при помощи масс-спектрометра для нейтральных газовых компонентов в диапазоне масс 1–50. Для измерений параметров ионосферы служил анализатор с замедляющим потенциалом (АЗП), позволяющий измерять температуру, состав и концентрацию ионов, а также энергетический спектр электронов (главной целью было в данном случае изучение взаимодействия солнечного ветра с верхней атмосферой). Датчики давления, температуры и ускорения предназначались для измерений на высотах ниже 100 км. Эта аппаратура вместе с гироскопом и радарным альтиметром орбитального отсека дала возможность получить вертикальные профили плотности, давления, температуры и ветра в широком диапазоне высот.

Анализ данных масс-спектрометра для высоты 135 км выявляет наличие отчетливых пиков при массах 40 и 20, свидетельствующих о наличии аргона. Оценка его отношения смеси (относительно СО2) дала значение около 0,015 по объему, которое сильно расходится с данными АМС «Марс-6», приведшими к отношению смеси 0,35±0,10 [5, 12]. По-видимому, отношение смеси 40Ar в нижних слоях марсианской атмосферы не может быть столь высоким и не превышает 0,01–0,02.

Хотя следует, естественно, отдать предпочтение данным прямых измерений, необходимо упомянуть, что, как показал В. И. Мороз [81] на основе анализа имеющихся данных спектроскопических и радиорефракционных измерений, результаты прямых измерений на СА «Марс-6» не противоречат этим данным. В работе [81] рассмотрены три типа косвенных измерений: 1) эквивалентной ширины слабых (ненасыщенных) линий углекислого газа, 2) эквивалентной ширины насыщенных линий, 3) радиорефракционные наблюдения. Во всех этих случаях присутствие в атмосфере Марса 25–30% аргона не оказывает существенного влияния на оценки значения атмосферного давления у поверхности. По-видимому, нижний предел возможного содержания аргона является наиболее вероятным.

Если исходить из радиорефракционных данных, наличие 25% аргона вызывает возрастание давления у поверхности на 0,5 мбар. Присутствие значительного количества аргона в марсианской атмосфере является одним из аргументов в пользу гипотезы о возможности существенно иного климата в геологическом прошлом Марса при атмосферном давлении 0,1–1 атм, более высокой температуре и наличии водных бассейнов.

Полученный по данным СА «Викинг-1» пик при массе 28 отображает вклад СО2+, образующегося в результате ионизации СО2 и СО, в дополнение к N2+ который является продуктом ионизации N2. Отношение смеси молекулярного азота (относительно СО2) составляет около 0,06. Предварительная экстраполяция этих данных на более низкие высоты приводит к отношениям смеси порядка 0,02–0,03. На больших высотах отношение смеси молекулярного азота возрастает, вследствие влияния диффузионного разделения.

Оценка отношения смеси О2 по пику массы 32 дает значение около 0,003 на высоте 135 км. Пик при массе 16 указывает на присутствие измеримых количеств атомарного кислорода. Соотношения концентраций изотопов 18О/16О и 13С/12С близки к их земным значениям. Анализ вертикальных профилей концентрации СО2, Аr, N2 и О2 в слое 140–190 км приводит к оценке средней температуры 180±20 К. Заметное проявление диффузионного разделения газов на высотах более 140 км свидетельствует о том, что существенное влияние перемешивания в атмосфере ограничивается этим уровнем.

Данные АЗП для высоты 130 км указывают на то, что главным компонентом марсианской ионосферы является О2+ (этот важный результат является новым), а концентрация СО2+ оказывается примерно в 9 раз меньшей. Ионная температура составляет около 160 К, что согласуется с результатами масс-спектрометрических измерений. Полученные данные свидетельствуют о ведущем значении для ионосферы реакции: СО2++O > + О2+.

Измерения в нижних слоях атмосферы привели к давлению у поверхности планеты в точке посадки СА, равному 7,3 мбар (точка посадки на 2,9 км выше среднего уровня марсианской поверхности, которому соответствует давление 6,1 мбар) и температуре 241К при вертикальном градиенте температуры в приповерхностном слое, составляющем 3,7 К/км. Плотность воздуха, оцененная по скорости парашютирования, равна 0,0136 кг/м3 на высоте 2,7 км, что указывает на преимущественно углекислотный состав атмосферы. В слое 25–90 км температура варьирует в пределах 120–165 К при наличии пиков на высотах 30 и 64 км, а выше 140 км плавно переходит в зону температур, полученную по данным масс-спектрометра.

Осуществленный в работах [86–88] предварительный анализ изотопного состава марсианской атмосферы по данным измерений при помощи масс-спектрометра для нейтральных частиц на высотах 100–200 км во время спуска СА «Викинга-1» привел к выводу, что в атмосфере преобладает СО2 при наличии следов N2, Ar, О2, СО и О. Относительное содержание изотопов кислорода и углерода оказалось примерно таким же, как в земной атмосфере. В работе [87] обсуждены результаты последующего определения отношений концентрации изотопов 180/160, 13С/12С и 15N/14N на основе анализа шести масс-спектров, относящихся к диапазону высот 111–157 км.

Рассматриваемый анализ привел к значениям 180/160 = 0,0020 + 0,0001 или 0,0021 + 0,0002. Так как для земной атмосферы соответствующее среднее значение составляет 0,00204, то марсианская атмосфера не может быть в сколько-нибудь существенной степени обогащена 18О по сравнению с земной атмосферой (вероятнее всего, что подобное обогащение не превосходит 3%). Аналогичная ситуация имеет место в отношении 13С. Однако отношение концентраций 15N/14N = 0,0064 ± 0,001 тогда как в условиях земной атмосферы это отношение равно 0,00368.

Отсюда вытекает, что марсианская атмосфера обогащена изотопом 15N по сравнению с земной примерно на 75%. По-видимому, это обогащение обусловлено повышенной диссипацией атомов 14N из верхней атмосферы Марса. Оценка коэффициента диффузии с учетом такого предположения дала значение 108 см2/с, согласующееся с полученными ранее результатами. Следует считать вероятным, что содержание молекулярного азота в марсианской атмосфере в геологическом прошлом было значительно более высоким, обеспечивая парциальное давление не менее 2 мбар.

Аналогичный анализ, относящийся к изотопам кислорода, привел к выводу о необходимости существования очень мощного источника кислорода. Обогащение изотопом 18О, составляющее менее 3%, требует обмена углекислым газом или водяным паром между подповерхностным резервуаром и атмосферой, который предполагает содержание этих газовых компонентов, эквивалентное давлению не менее 2 бар.

При помощи масс-спектрометра, установленного на СА «Викинг-1» и предназначавшегося (в сочетании с газовым хроматографом) прежде всего для определения состава органических компонентов почвы, Оуэн и Биманн [90] выполнили анализ химического состава атмосферы. В течение четвертых и пятых суток после посадки сделано шесть серий измерений через интервалы времени около 6 часов. Первые четыре серии выполнены после удаления СО и СО2 (СО2+ как продукт этих компонентов затрудняет анализ на молекулярный азот), а остальные две серии — с непосредственными пробами воздуха. В табл. 7 представлены осредненные по пяти сериям результаты измерений (третья серия оказалась неудачной).

Таблица 7 Предварительные данные о составе атмосферы у поверхности Марса

Отсюда видно, что измеренное содержание азота согласуется с полученной ранее оценкой и данными измерений во время спуска СА. Концентрация аргона значительно превышает обнаруженную по данным АМС «Марс-6», не согласуется с результатами измерений во время спуска. Содержание 36Аr оказалось примерно в 10 раз меньшим, чем в земных условиях. Окись углерода не была обнаружена, ввиду ее малой концентрации, находящейся за пределом чувствительности масс-спектрометра. По данным для пиков масс при 44, 45 и 46 обнаружены концентрации 13С и 18О, оказавшиеся близкими к земным значениям.

Установленный на спускаемом аппарате АМС «Викинг-1» рентгеновский флуоресцентный спектрометр, который был предназначен для элементного анализа марсианского грунта, использовался также с целью измерений содержания некоторых газовых компонентов атмосферы [28]. Особое внимание привлекала задача определения концентрации аргона. Измерения привели к выводу, что парциальное давление аргона не превосходит 0,15 мбар (доверительный уровень составляет 95%). Если учесть, что атмосферное давление в точке посадки составляло 7,7 мбар, это приводит к относительной объемной концентрации аргона, составляющей 2%, что хорошо согласуется с данными масс-спектрометрических измерений на СА. По-видимому, аргон имеет преимущественно радиогенное происхождение, являясь продуктом распада 40К. В связи с этим важное значение имеет определение содержания калия в марсианском грунте.

В течение августа 1976 г. при помощи масс-спектрометра, установленного на СА «Викинг-1», продолжались измерения относительного содержания изотопов аргона, углерода, кислорода и азота, а также предприняты поиски других малых компонентов, особенно благородных газов [18]. Производились анализы как непосредственно взятых, так и обогащенных (путем удаления СО и СО2) проб атмосферы, что позволяло повысить относительную концентрацию малых компонентов в 8,5 раза.

Таблица 8 Изотопные отношения в марсианской и земной атмосферах

В табл. 8 представлены результаты измерений изотопных отношений в сопоставлении с данными для земной атмосферы, свидетельствующие о более высокой концентрации 15N в марсианской атмосфере по сравнению с земной (эти результаты могут быть, однако, недостаточно точны, ввиду возможного влияния десорбции 13СО в приборе). Недостаточно надежны и данные по аргону, которые следует рассматривать лишь как обнаружившие изотопное отношение, близкое к земному. Попытка обнаружения метана, неона, криптона и ксенона не дала положительного результата.

Измерения на СА «Викинг-2» с обогащением образцов воздуха в 10 раз позволили определить содержание криптона и ксенона, выявив, что криптон присутствует в бoльших количествах, чем ксенон [92]. Относительное содержание различных изотопов криптона близко соответствует земным значениям, но отношение концентрации ксенона-129 и ксенона-132 оказалось более высоким, чем в земной атмосфере.

Полученные результаты позволяют считать мало вероятным, что Марс мог иметь в прошлом массивную первоначальную атмосферу, которая была затем постепенно «сдута» солнечным ветром, так как в противном случае отношение концентраций 36Аr и криптона должно быть гораздо меньшим, чем в земной атмосфере, поскольку «сдувание» аргона более эффективно, чем криптона. Обнаруженная в атмосфере Марса низкая концентрация аргона свидетельствует об одной из следующих возможностей: 1) на Марсе в период его формирования имело место пониженное содержание летучих компонентов (это, однако, мало вероятно, ввиду близости планеты к Солнцу); 2) значительная часть первоначальной атмосферы планеты подвергалась «сдуванию» солнечным ветром, в процессе которого происходило изменение состава атмосферы; 3) на Марсе не было такой интенсивной дегазации твердой оболочки планеты, как на Земле. Последняя возможность является наиболее вероятной.

Важное значение имеет факт преобладания криптона над ксеноном в марсианской атмосфере (аналогичная ситуация наблюдается в земной атмосфере), тогда как обратное справедливо для состава протопланетной газовой компоненты обычных или карбонатных хондритов. В связи с этим можно предположить, что на Марсе происходил подобный земному процесс преимущественной адсорбции ксенона, выделившегося при дегазации осадочными породами. Возможно, что подобный процесс имел место на Марсе в периоды флювиальной эрозии. Альтернативное (или дополнительное) предположение состоит в том, что ксенон был поглощен реголитом.

Низкая концентрация аргона свидетельствует о необходимости внести поправки в оценки концентрации других летучих компонентов, основанные на предположении о высоком содержании аргона. Однако малое по сравнению с земным отношение концентрации изотопов аргона указывает, по-видимому, на большую сложность процессов дегазации на Марсе, чем это предполагается по аналогии с Землей.

Можно считать, что Марс и Земля имеют, в целом, сходный состав и поэтому продукция газов осуществляется в одинаковых пропорциях, но дегазация и выветривание были на Марсе гораздо менее полными. Значительная часть летучих компонентов могла быть захвачена слоями вечной мерзлоты (Н2О), полярными шапками (Н2О, СО2), химически связана в грунте (нитраты, окислы, карбонаты) или диссипировала. Если принять такую гипотезу, то из нее вытекает, что масса марсианской атмосферы в прошлом не могла превышать современную более, чем в 10 раз, т. е. давление у поверхности не превосходило 100 мбар. Существование огромных количеств «погребенных» СО2 и Н2О допускает, однако, возможность циклических или эпизодических вариаций климата, которые могли обусловить появление флювиальных структур рельефа.